

URS Approaches to exposure assessment

SoBRA Summer 2013 workshop Risks to human health from asbestos in soil

URS Possible Approaches

Key Question

- How much asbestos will get airborne?
 - Source dispersed asbestos fibres in soil or C&D material and/or discrete fragments of ACM
 - Receptor people
 - Pathways generating airborne fibres:
 - Wind erosion of ground surface
 - Mechanical disturbance of ground

Possible Approaches

- Purely qualitative approach
- Adopt existing dust models
- Adopt empirical data relationships
- Adopt laboratory methods
 - Lab-based empirical relationships
 - Laboratory testing of field samples
- Adopt site-specific field testing (activity-based sampling)

- Rank situation according to airborne fibre generation potential
- E.g.:
 - HSG227
 - HSG264
 - DETS
 - RIVM
 - IAQM

Qualitative exposure estimates

- Hazard posed by asbestos is severe
- Risk posed by asbestos can be very high, and can be relatively low, circumstance depending
- Risk = severity x likelihood

(po		Consequence						
bability (Likeliho		Severe	Medium	Mild	Minor			
	High likelihood	Very high risk	High risk	Moderate risk	Low risk			
	Likely	High risk	Moderate risk	Moderate/low risk	Low risk			
	Low likelihood	Moderate risk	Moderate/low risk	Low risk	Very low risk			
Pro	Unlikely	Moderate/low risk	Low risk	Very low risk	Very low risk			

NHBC, EA, CIEH R&D 66:2008

1

Table 6 Descriptors for "Likelihood of Consequence Occurring"²

Likelihood Descriptor	Probability of Occurrence*
Very Likely / Certain	More than 95%
Likely	45 to 95%
Unlikely	5 to 44%
Very Unlikely	Less than 5%
Extremely Unlikely	Much less than 1%
No pollutant Linkage	Zero

1 in 10,000 is 0.01%; 1 in 100, 000 is 0.001%

- HSE HSG227 and HSG264 assessment algorithms
- Material assessment ease of fibre release
- Priority assessment likelihood of ACM disturbance
- Numerical scoring system (1-3) to assess potential for fibre release
- Not designed to calculate absolute differences in hazard (fibre potency and fibre release).
- Fibre release potential parameters:
 - Product type
 - Extent of deterioration/damage
 - Surface treatment
 - Asbestos type

- Priority algorithm key factors
 - Maintenance activity
 - Occupant activity
 - Likelihood of disturbance
 - Human exposure potential

Degree of disturbance

Location, accessibility, extent of ACM

Number of people, frequency of exposure

• Scored 0-3

- RIVM
- Qualitative estimates of air concentrations based on soil content and activity
- Based on empirical measurements

Asbestos Soil Concentration (mg/kg)	No activity Activity		No activity	Activity
	Bound	Bound	Unbound	Unbound
<5	-	-	-	-
5-100 (0.01%)	-	-	(-)	(+/-,+)
100-1,000	-	(+/-)	(+/-)	(+,++)
>1,000 (0.1%)	(+/-)	(+,++)	(+,++)	++

Asbestos Soil Concentration (mg/kg)	No activity	Activity	No activity	Activity
	Bound	Bound	Unbound	Unbound
<5	-	-	-	-
5-100 (0.01%)	-	-	(-)	(+/-,+)
100-1,000	-	(+/-)	(+/-)	(+,++)
>1,000 (0.1%)	(+/-)	(+,++)	(+,++)	++

- No activity no mechanical soil disturbance
- Activity mechanical disturbance sampling, digging, sifting, remediation works
- - no fibre release above background
- +/- fibres below 1000 f/m³ (0.001 f/ml)
- + fibres 100-100,000 f/m³ (0.001-0.1 f/ml)
- ++ fibres above 100,000 f/m³ (0.1 f/ml)

- IAQM
- Activity specific stepped approach to assessing and mitigating dust emissions from construction sites
- STEP 1 screen requirement for more detailed assessment based on distance to receptor
- STEP 2 assess risk of dust effects using scale and nature of works (i.e. dust emission potential) and proximity of sensitive receptors
- STEP 3 Determine site-specific mitigation for each activity
- STEP 4 Assess significance of dust effects professional judgement based on Steps 2 and 3

Figure 1: Steps to Perform a Dust Assessment

Table 4: Risk Category from Trackout

ceptor (m) ^a	Dust Emission Class			
ling and PM ₁₀ Ecological Large Medium		Small		
-	High Risk Site	Medium Risk Site	Medium Risk Site	
<20	Medium Risk Site	Medium Risk Site	Low Risk Site	
20 - 100	Low Risk Site	Negligible		
	Ecological - <20 20 - 100	ceptor (m) ^a EcologicalEcologicalLarge-High Risk Site<20	Ceptor (m) ^a Ust Emission ClassEcologicalLargeMedium-High Risk SiteMedium Risk Site<20	

For trackout the distance is from the roads used by construction traffic.

Table 8: Significance of Effects for Each Activity with No Mitigation

Sensitivity of	Risk of Site Giving Rise to Dust Effects					
Surrounding Area	High	Medium	Low			
Very High	Substantial adverse	Moderate adverse	Moderate adverse			
High	Moderate adverse	Moderate adverse	Slight adverse			
Medium	Moderate adverse	Slight adverse	Negligible			
Low	Slight Adverse	Negligible	Negligible			

• From IAQM Guidance on the assessment of the impacts of construction on air quality and the determination of their significance, January 2012

Is it possible to equate a qualitative scoring system to quantitative exposure estimates?

Can a qualitative approach be sufficiently calibrated / adequately balanced?

- Particle sizes:
 - Dust PM10 (<10µm diameter)
 - Dust PM2.5 (<2.5µm diameter)
 - Typical soil descriptors (BS5930)

Soil type	Particle size
Coarse sand	600-2000µm diameter
Medium sand	200-600µm diameter
Fine sand	60-200µm diameter
Coarse silt	20-60µm diameter
Medium silt	6-20µm diameter
Fine silt	2-6µm diameter
Clay	<2µm diameter

Coarse silt barely visible to naked eye (i.e. particles >60µm diameter)

- HPA Compendium of Chemical Hazards:
 - Chrysotile fibres naturally occur in lengths $< 5\mu m$
 - Amosite fibres typically 5-10µm in length
 - Crocidolite fibres bundles can disperse into smaller fibres (5-10 μm in length) but typically not as small as chrysotile
- Focus on thoracic fibres >5μm length, <3μm diameter, aspect ratio 3:1. Long, thin fibres pose greatest risk
- Fibres in soil won't conform to this narrow range

• Current asbestos fibres size range of concern:

 $>5\mu m$ length, $<3\mu m$ diameter

URS Approaches to exposure assessment

- Range of fibres possible in soil? Not tested?
- Any known studies?

- Particle density:
 - Sand ~ 2.6 g/cm³
 - Silt and clay ~ 2.8 g.cm³
- Fibre density:
 - Asbestos ~ 1.6 g/cm³
- Asbestos fibres
 - lighter(?)
 - greater aerodynamic resistance(?)
 - potential to be entrained in air more easily (i.e. lower threshold frictional velocity(?)
 - carried greater distances in air(?)
 - Use correction factor for dust estimates?

- Previously proposed generic dust levels (PM10):
 - Simmonds et al (1995) 10,000 μ g/m³ for man-made disturbance
 - Oatway & Mobbs (2003) 500 $\mu g/m^3$ for residential and school land use and 10,000 $\mu g/m^3$ for agricultural use
 - Oomen & Lijzen (2004) data ranging from 12.6-157 $\mu g/m^3$ for residential, commercial and school land uses recommendations for 60 $\mu g/m^3$ for homes and 100 $\mu g/m^3$ for school classrooms and other very crowded places
 - Van den Berg (1994) 53 $\mu g/m^3$ for indoor air; 70 $\mu g/m^3\,$ for outdoor air
 - Paustenbach (1997) indoor dust 50 μ g/m³
 - CLEA (2009) indoor dust 50 $\mu g/m^3$

- Key factors for dust generation (from Cowherd et al 1985):
 - Surface material texture (dry particle size distribution)
 - Surface material moisture
 - Non-erodible elements
 - Crust formation
 - Frequency of mechanical disturbance
 - Wind speed

- Estimating ambient dust concentrations (PM10):
 - CLEA model adopts Cowherd et al (US EPA) 1985

Equation 9.2

$$J_{w} = 0.036 (1-V) \left(\frac{u}{u_{t}}\right)^{3} F(x) \times \frac{1}{3600} hr s^{-1}$$

Where: J_w is the PM₁₀ emission flux, g m⁻² s⁻¹ *V* is the fraction of outdoor surface cover (equals zero for bare soil), dimensionless [0.5 to 0.8] *u* is the mean annual wind speed at height of 10 m, m s⁻¹ [5] *u_t* is the threshold value of wind speed at height of 10 m, m s⁻¹ [7.2] *F*(*x*) is an empirical function of *x*, dimensionless [1.22]

- Most sensitive value is threshold friction velocity
- Site-specific estimation method provided by Cowherd et al based on empirical (field) data
- Generic assumption by US EPA and CLEA of 500 μm as modal value for soil particle sizes (medium sand)
- Cowherd et al report highlights that method provides order of magnitude estimates

Cowherd et al threshold velocity sensitivity

Equation 9.3

Where:

- e: u_t is the threshold value of wind speed at height of 10 m, m s⁻¹ u_* is the corrected threshold friction velocity at 0 m, m s⁻¹ [0.625] z_t is the height above the ground, cm [1000]
 - z_0 is the roughness height, cm [10]

Equation 9.4

Where: x is the empirical parameter, dimensionless u_t is the threshold value of wind speed at 10 m, m s⁻¹ [7.2] [u] is the mean annual wind speed at 10 m, m s⁻¹ [5]

Equation 9.2

$$J_w = 0.036 \left(1 - V \left(\frac{u}{u_t}\right)^3 F(x) \times \frac{1}{3600} hr \, s^{-1}\right)$$

Where: J_w is the PM₁₀ emission flux, g m⁻² s⁻¹

V is the fraction of outdoor surface cover (equals zero for bare soil), dimensionless [0.5 to 0.8]

- u is the mean annual wind speed at height of 10 m, m s⁻¹ [5]
- u_t is the threshold value of wind speed at height of 10 m, m s⁻¹ [7.2]
- F(x) is an empirical function of x, dimensionless [1.22]

- CLEA ambient dust levels:
 - Default residential assumptions (source area 0.01ha) 0.4 μ g/m³
 - 0% vegetation cover 1.7 μ g/m³
 - Default commercial assumptions (source area 2ha) 7-12 μ g/m³
 - 0% surface cover 34-60 μ g/m³
 - Low, compared to default assumptions for indoor levels (50 $\mu g/m^3$ for residential, 100 $\mu g/m^3$ for commercial)
 - Estimates are annual average particulate concentrations based on an 'unlimited reservoir' of erodible particles (i.e. highly erodible, dry soils)

- Occupational dust limits:
 - WEL (inhalable) 10 mg/m³
 - WEL (respirable) 4 mg/m^3
- Defra Air Quality Strategy objective 50 μ g/m³
- Construction dust advisory limit 250 μ g/m³

- HSE study of construction dust
- Small study 7 sites, 48 samples
- Majority of results < 50 μ g/m³

HSE	Health and Safety Executive
Levels of respirable dust a crystalline silica at constru	nd respirable Iction sites
Prepared by the Health and Safety Laborator for the Health and Safety Executive 2011	ry

- Models for mechanical disturbance:
 - US EPA dust emission factors
 - ECHA guidance on information requirements and chemical safety assessment REACH 2012
 - ART model

ART Model

- Bayesian modelling approach to combine mechanistic inhalation exposure estimates with workplace exposure data
- PM 10 estimates
- Contributors:
- HSL
- Baua
- TNO
- IOM
- Arbejdsmiljoforskning
- iras

ART Model

- Key parameters:
 - Dustiness of material (inhalable fraction mg/kg)
 - Moisture content
 - Weight fraction of substance in material
 - Activity class and sub-class
 - Environment

- US EPA AP42 dust emission factors
 - Unpaved roads
 - Heavy construction operations
 - Aggregate handling and stockpiles
 - Industrial wind erosion

Question – how do we convert dust PM10 estimate to an asbestos fibre concentration?

$$C_{\text{fibre}}$$
 (f/m³) = C_{dust} (mg/m³) x C_{soil} (wt/wt) x EF

- EF = enrichment factor
- Question how do we determine the EF? Should it be >1?
- EF needs to convert from wt/wt asbestos in dust to f/vol
- RIVM adopt fibre no./wt. conversion of 2,000-4,000 fibres per ng
- Dutch study into house dust (711701037/2004) assumes asbestos concentration in dust = concentration in soil

Can we accept lack of validation of dust models for asbestos fibre release?

URS Approaches to exposure assessment

SKB Project (Tromp, 2002)

- 30 research reports since 1987
- 1,000 measurements
- Focus on:
 - 350 field measurements for bound asbestos
 - 200 field measurements for unbound asbestos

• Figures 2.2 & 2.3 from RIVM report 711701034/2003

SKB Project (Tromp, 2002)

- 85 positive results from unbound asbestos in dry soil
- Practical results order of magnitude lower than lab simulations

• Figure 4.1 from RIVM report 711701034/2003

SKB Project (Tromp, 2002)

- Influence of soil moisture:
 - Exponential relationship
 - Greatest influence in sandy soils (lowest fibre adsorption)
 - Factor of 100 reduction with 5-10% SM

Comparison between Addison et al and Tromp...

N.B. Not corrected for airborne dust levels

Can we accept limitations in current studies? Are empirical relationships adequate for use?

- US EPA 2008 Superfund framework
- Emphasises empirical approach
- Predictive models for airborne asbestos from soil not validated
- Preliminary screening worst case ABS
 - Indoors disturbance of house dust
 - Outdoors highest soil concentrations, dry conditions, 'aggressive' raking or other SOP activity
 - If airborne asbestos detected, move to next step...

- US EPA 2008 Superfund framework
- Site-specific ABS
- Requirement for samples to reflect differences in time and space
- Range of disturbance activities
- Requirement for QAPP and SAP
- HASP, PPE and training important
- Determination of pathway specific exposure point concentration
- Adjustment for potential future increase in fibre releasability

- Site-specific ABS scenarios
 - ATV riding
 - Child playing in the dirt
 - Gardening/rototilling
 - Weed whacking/cutting
 - Digging
 - Lawn mowing
 - Walker with stroller
 - Jogging
 - Two bicycles
 - Basketball

- US EPA 2008 Superfund framework
- No current validated technique for modelling or adjusting for releasability
- Actively pursuing development and validation of methods for assessing releasability from solid matrices (inc soil)
 - Field
 - Laboratory

Air monitoring – issues to consider

- Required detection limit
- Sample volume required to meet detection limit
- Sample duration (sampling rate)
- Variations to standard protocols required is standard protocol sufficient?
- Adverse effect of dust levels
 - Masking of fibres on filter
 - Requirement to reduce sample volume
 - Knock-on effect on detection limit

Is ABS practicable? In what circumstances?

URS Background Exposure

• Typical concentrations in the UK?

Study	No of buildings or people and (air samples)	Types of buildings / or person sampled	Arithmetic average indoor in asbestos containing buildings (f/ml)	Arithmetic average outdoors (f/ml)	Special observations
HEI – Review (1992)	198 (1377)	All buildings (occupied).	0.00027 270 f/m³	~0.00001 rural ~0.0001	a maintenance and custodial work and cable pulling gave highest value. Excluding bighest value (sample) average
data		Schools and colleges	0.00051	510 f/m ³	becomes: 0.00038 (mechanical room)
		Residences Public and commercial	0.00019 0.00020	200 f/m ³	0.00008 (during cable pulling)
HEI Review – Litigation data	171	Schools and 110 colleges) f/m³ 0011	0.00005	50 f/m ³
	10	Residences	BLD		
	50	Public and commercial	0.00006	60 f/m ³	

WATCH paper 2010 02 annex 3

• Typical concentrations in The Netherlands

	×	1 0	
Source	Location	Concentration asbestos in air [∆]	
Slooff 1989	Outdoor	<0.1-5 ng/m ³ (~10 ² -10 ⁴ fibres/m ³)	00-10,000 f/m ³ nside
			nouses roughly similar to concentration
			in outdoor air in 1980s.
Slooff 1989	Indoor	<1 - 6000 ng/m ³	Measured in building in which sprayed
			asbestos layers were present.
Slooff 1989	Indoor	Up to 170 ng/m ³	Caused by chrysotile containing floor
			covering
Brand 1994	Indoor	Asbestos levels in indoor air usually	Year average 1000 f/m ³
		around 1000 fibre equivalents/m ³	
Besson 1999	Indoor	3×10 ³ -8×10 ⁴ fibres/m ³	Building with low levels of asbestos
			pollution; extrapolated from
		3,000-80,000 f/m ³	measurement of fibres greater than 3
		0,000 00,000	um in length.
Mennen 2001	Outdoor	250-580 fibre equivalents/m ³ 250-5	80 f/m3 days following the
		250-5	sion*.
		highest value 10900 fibre equivalents/m ³	Highest asbestos levels found in a few
			samples in days following the
		10-100 f/m	3 ischede explosion*.
Swartjes 2003	Outdoor	10-100 fibers/m ³	eference: ATSDR

Table 11. Overview of studies reporting asbestos levels in air.

RIVM, 2004

• Typical concentrations in the US

Table E-1: Background Levels of Asbestos in Environmental Air Samples in USA (fibers/ml, >5 um)¹

000 5/ 2	Median	Mean*	Range*
Urban Outdoor Air ² 300 f/m ³	0.0003a		ND-0.008
Urban Outdoor Air ³	50 f/m ³	0.00005a	
Outdoor Air ⁴		0.00039b	
Residences with ACM ⁵		0.0001	ND-0.002
Buildings with ACM ^{6,7,8}	50 f/m ³	0.00005	ND-0.00056
Buildings without ACM		ND	ND
Schools ⁹		0.00024	ND-0.0023
Schools with ACM ¹⁰	200 f/m ³	0.0002	ND-0.0016
Public Buildings (no ACM)		0.00099	
Public Buildings (with ACM in good	500 f/m ³	0.00059	
condition)	550 1/11		
Public Buildings (with damaged ACM)	730 f/m ³	0.00073	

University of Illinois, 2006

Fibre release in other scenarios

- HPA (2007) report on risk from building fires (inc. data from NY twin towers)
 - Assumption of 2 days exposure at 0.1 f/ml
- HSL (2006) report on fibre release from asbestos cement

Table A	2: Summar	y of all res	ults in HS	SL databa	ise for asbe	estos ceme	nt work.		
	Type of sample	No of data /site	Mean (f/ml)	SD	Minimum of means	Maximum of means	No of samples	Sum (mean * number)	Weighted mean
All	All	51	0.189	0.757	0	5.45	245	48.184	0.197
	Personal	36			0.0015	0.23	94	7.665	0.082
	Static	8			0	0.4	103	24.486	0.238
	Unspecified	7			0.008	5.45	48	16.033	0.334
Dry	All				0				
	Personal	7	0.124	0.076	0.03	0.23	39	4.450	0.114
	Static								
	Unspecified								
Not Known	All	43	0.203	0.825	0	5.45	198	43.494	0.220
	Personal	28	0.057	0.052	0.0015	0.195	47	2.975	0.063
	Static	8	0.120	0.149	0	0.4	103	24.486	0.238
	Unspecified	7	0.881	2.019	0.008	5.45	48	16.033	0.334
Wet	All								
	Personal	1	0.03		0.03	0.03	8	0.240	0.030
	Static								
	Unspecified								

- 51 results
- Range: 0.03 f/ml 0.334 f/ml weighted mean; maximum of means 5.45 f/ml

Can we understand and work within limitations of current science?

Thank you

simon.cole@urs.com

Approaches to exposure assessment