

The Avenue former Coking Works Remediation and Regeneration Project (1999-2015+)

Martin Westwood

Principal Environmental Scientist / Stage 3 NEC contract supervisor-designer (2008-2016)

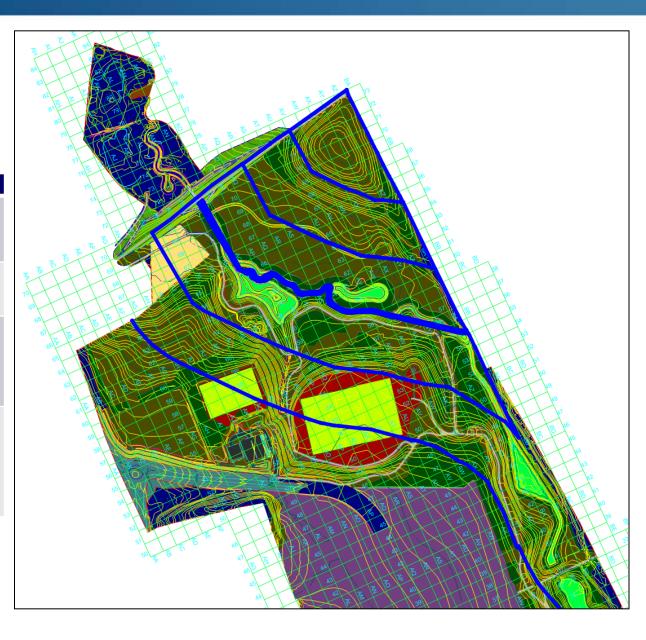
SoBRA / RSC Tox group conference 16th December

Turner & Townsend

....

Scope of Presentation

- Project Overview
- Remediation Strategy and Techniques
- CW CSM
- CW Assessments/DQRA
- Post Completion landform and CSM


Project Objectives and Overview

- To discharge HCA's legal obligations: source contamination, cleaning up the River Rother/ shallow groundwater
- Prepare the site for the planned redevelopment in accordance with the planning consent for the project
- Planning Permission CW4/0507/39 remediation of the site via on-site treatment of contaminated soils and sediments, with landform reinstatement to a variety of end-uses, including public open space, formal and informal leisure areas, nature conservation areas and a development platform
- Incorporate flood protection measures and SUDs (of which the Environment Agency is the promoter)
- Voluntary remediation to avoid any regulatory action under Part IIA of the Environmental Protection Act
- Between 1991 and 2007: 22 Phases of investigation: 415 Boreholes/750 Trial Pits
- Environmental Monitoring Programmes (Ground gas, Vapour, Air Quality, Surface Water, Groundwater, leachate)
- Source characterisation: Identified Contaminants of Concern : PAHs (Poly Aromatic Hydrocarbons), Phenols, DROs (Diesel Range Organics), PROs (Petrol Range Organics), BTEX (Benzene, Toluene, Ethylene, Xylene), Cyanide, Thiocyanate, Ammonia, Heavy Metals (Arsenic, Nickel, Cadmium, Chromium), Asbestos
- Geological / Geotechnical / Hydrogeological Characterisation
- Maximise re-use of site won material with treatment / and minimise off-site disposal

Site Zones

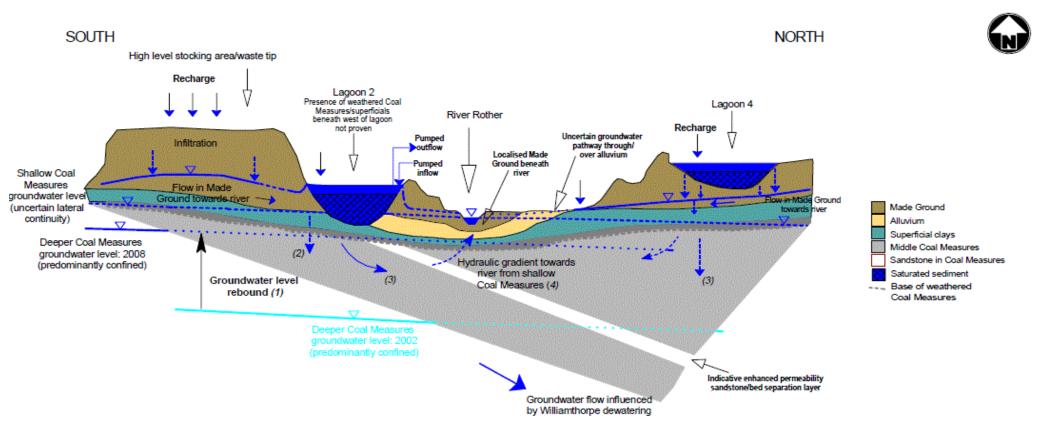
98 Hectares

Туре	Narrative
Former Uses	Zone 1A to 5B which broadly correspond to the primary historical contaminative land-use areas.
Grid Cells	In order to manage the earthworks the site up into over 2000 grid cells
Material Reuse Zones	3x re-use zone denoted from the distance from the River Rother in the final alignment
	(0-100m, 100-200m and >200m).
Structural Performance Zones	range of zones associated with structural performance of placed fill material.

The Problems

Predicted/Final Treatment Volumes Remediation Techniques

Technique	Designs Volume	Final / Forecast
Tre	atment (m ³)	
Thermal desorption	270,300	257,266
Soil screening /sorting	237,600	203,485
Bioremediation	74,000	181,206
Total	581,900	641,497
Off-Site D	Disposal (Tonnes)	
Asbestos	2352	913
Metal	3000	550
Other waste	4600	2470
Recovered Timber	1450	10,000
Tar	0	19,000
Total	11, 402	32,020
All Ea	arthworks (m ³)	
Total Material volume (cut)	1,883,377	2,244,989
Total Material volume (Fill)	1,934,896	2,178,20
Total	3,818,273	4,423,189
Material Import to Create Landform	0	80,000
Groundwater and Surface Water Treated	??	635,654
		,



Pre-Remediation Conceptual Site Model (Controlled Waters)

DQRA Model / Assumptions

- EA agreed risk to groundwater need not be considered on the basis of cost benefit and therefore the River Rother =Receptor
- Free phase excluded (Visible Free Product (VFP) requires treatment mandatory)
- Upward flow from coal measures (artesian /rising groundwater) excluded as aquitard reinstated
- Conceptual agreement that COCs above the Coal measures will migrate to river /no GW water + COC loss to the aquifer
- Base of excavation derived to excavate and treat all contaminated material above coal measures
- In-situ biodegradation not included -conservative
- Retardation allowed for (KOC)
- Plume concentration diluted by a factor of 175 (low flow river DF) + 1/10th EQS
- Limited suite of COCs given TDU/cost (50,000+ soil samples) + COCs co-exist i.e. destroy one, destroy them all

Numerous iterations to reach final RTs

- <u>COC physical/chemical properties:</u> retained in all DQRA
- <u>Source:</u> Material volumes, placement zones +depth, composition -varies as scheme evolves
- <u>Pathway:</u> Hydrogeological Parameterisation-constant review as scheme evolves
- <u>Receptor : River final location-varies as scheme evolves</u>

Determinand	Units	Reuse within 100m of River Rother	Reuse between 100m and 200m of River Rother	Reuse more than 200m from the River Rother
Ammoniacal Nitrogen (NH₄)	mg/l	2.5	n/a	n/a
Benzene	mg/l	0.03	1.75	8.75
Cyanide (CN)	mg/l	0.05	175	175
Naphthalene	mg/l	0.01	n/a	n/a
Phenol	mg/l	0.03	0.7	1.75
Diesel Range Organics (DRO)	mg/l	0.3	n/a	n/a
Thiocyanate (SCN)	mg/l	1	17.5	17.5

Controlled Water Risk Assessment and Remedial Targets

Phases of CW modelling and risk assessment:

2002: Consim v1.06

Source : fill material zones (X, Y, Z) / single value RT (benzene/ phenol / cyanide / thiocyanate) through an iterative process of varying leachate concentrations until no theoretical impact was observed at **receptor**

Pathway: GW above coal measures discharges to river/low flow river dilution factor applied (DF=50)

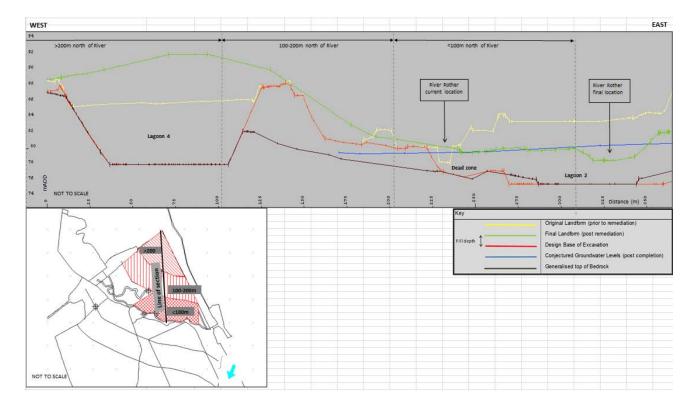
2004: Derivation of Leachable Soil RT: Consim v1.07

Source: fill material zones and material volumes changed (Areas 1,2,3) / derive RT (single value) (ammonical nitrogen/ benzene/ phenol / cyanide / thiocyanate/DRO) - iterative process of varying leachate concentrations / background SW/GW quality not included /100 year time frame **Pathways:** GW above coal measures (drift/fill) discharges to river (DF=170).

Other inputs best estimates (bulk density, unsaturated zone thickness/hydraulic conductivity/porosity/aquifer properties/ hydraulic gradient)

2008: Derivation of Leachable Soil RT : Consim v1.?

Value engineering/I££/landform changes/river location changes/ 3x zones created / 0-100m zone RT =EQS

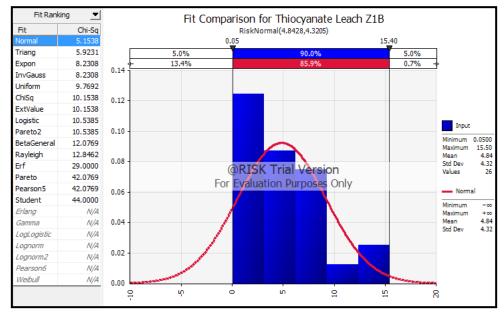

2012: Post Remediation Fill Verification Forecast to completion (ConSim 2.5-multiple source areas+ As built data available)

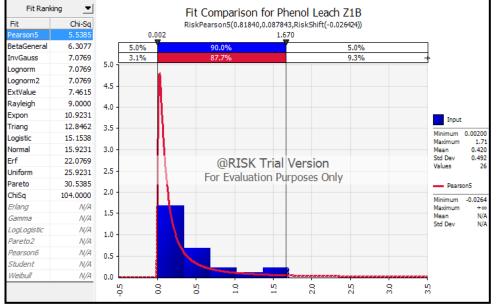
20012-2015: Numerous QRAs to evaluative Local Conditions / unforeseen / value engineering (ConSim/EA RTM) Alluvial deposits in 0-100m zone / TDU output material , tar etc.

2016: Final DQRA and 2 year monitoring programme - to be completed

2012: Post Remediation Fill Verification Forecast to completion

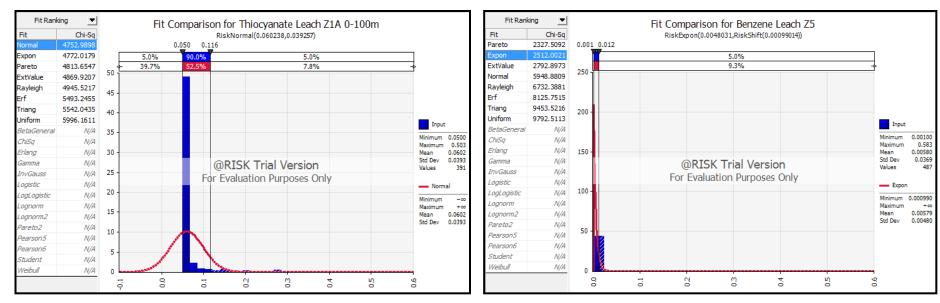
- Forward Mode to check predicted impacts at river (in final alignment)
- Real as-built data (Soil chemistry and properties after treatment and placement) Inc. 0-100m zone
- As built geology /geometry /parametrisation
- Still some assumptions about groundwater / hydrogeology /flow/head/gradient
- 3 Source areas to account for one direction flow in Consim
- Predicted "Raw Concentration" from 3 models combined and diluted by DF for river concentration
- Model run for 1000 years
- All new as built parameters reviewed against original parameters (sensitivity analysis)




Parameterisation: North of River Model (Source Area 3)

	Parameters		Units	Input*	Reference and Justification
	Source Zone				
	Dry Bulk Density		g/cm3	Uniform (1.6,2.2)	Based on Jacobs Babtie 2004 (Consim values) and refined based on data from fill placed (site geotechncial data base)
			9,01110	6/110/11 (110,212)	Likely depth of fill proposed within the Lagoon 4 area is based on the earthworks and Mass Haul (VSD 2011) (also see
	Thickness		m	Triangular (0.5, 9, 14)	Figure 3.3).
	Source Inventory		hu –		rigue stoj.
		Benzene	mg/l	Exponential (1.32)	
	SSAC Leachate	Cyanide (Total)	mg/l	Exponential (3.39)	Leachate concentration of placed fill materials (and taken to be an accurate forcast of future material) based on the Mass
North of	concentrations	Phenol	mg/l	LogNormal (0.42, 0.049)	Haul (VSD 2011). Fill is proposed to be comprised of birmediated sedimant, timber, made ground, TDU output. A review of
River >200m	(User defined)	Thiocvanate	mg/l	Normal (4.84, 4.32)	data was carried out within Tables 4.12a and b.
(iver >20011	Lincoturated Zono	Superficials/Weather			
	Thickness	Superiiciais/weath	m	Single (1)	Conservative estimate based on Mass Haul (VSD 2011) and source thickness in Lagoon 4.
	Dry Bulk Density		g/cm3	Uniform (1.6,3.2)	Based on Jacobs Babtie 2004 (Consim values)
	Vertical Dispersivity	,	m g/cm3	Single (0.1)	10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004).
	FOC		%	LogTriangular (0.27, 2.348,14.8)	Site specific data review of (clean) strata north of the river.
	Water filled porosity	,	fraction	Triangular (0.011, 0.179, 0.375)	Site specific data level of (clearl) strata horn of the river.
	Unsaturated Condu		m/s	LogTriangular (0.011, 0.179, 0.375)	Site specific data (Jacobs Babtie 2004). Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area.
	Source Zone	Clivity	III/S	Log mangular (1.19e-08,9.7e-07, 1.51e-05)	Site specific data (Jacobs Bablie 2004), refined to more accurately reflect the strata in this area.
				Liniferent (4.0.0.0)	Desider Jacks Debils 2004 (Ossilar also) and affect based on data from fill also d (site and taken in data base)
	Dry Bulk Density		g/cm3	Uniform (1.6,2.2)	Based on Jacobs Babtie 2004 (Consim values) and refined based on data from fill placed (site geotechncial data base)
	Thickness		m	Triangular (0.5, 2.5, 4.5)	Likely depth of fill within area based on the earthworks and Mass Haul (VSD 2011) (also see Figure 3.3).
	Source Inventory	Deserves		Normal (0.00570, 0.000)	
	SSAC Leachate	Benzene	mg/l	Normal (0.00572, 0.036)	
	concentrations	Cyanide (Total)	mg/l	Normal (0.00529, 0.0256)	Leachate concentrations from verification data of fill placed to date and TDU output suitable for 100-200m from the river. A
North of	(User defined)	Phenol	mg/l	Normal (0.0204, 0.0462)	review of data was carried out within Tables 4.10a and b.
River 100-	, ,	Thiocyanate	mg/l	Normal (0.0736, 0.116)	
200m		Superficials/Weather			- F
	Thickness		m	Triangular (0.5,1.5,2)	Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3).
	Dry Bulk Density		g/cm3	Uniform (1,3.2)	Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004.
	Vertical Dispersivity		m	Triangular (0.05,0.15,0.2)	10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004).
	FOC		% fraction	LogTriangular (0.27,2.348,14.8)	Site specific data review of (clean) strata north of the river.
	Water filled porosity			Triangular (0.011, 0.179, 0.375)	Site specific data (Jacobs Babtie 2004).
		Jnsaturated Conductivity		LogTriangular (1.19e-08,9.7e-07, 1.51e-05)	Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area.
	Source Zone				
	Dry Bulk Density		g/cm3	Uniform (1.6,2.2)	Based on Jacobs Babtie 2004 (Consim values) and refined based on data from fill placed (site geotechncial data base)
	Thickness			Triangular(0.2,5,8)	
			m	mangalar(0.2,3,0)	Likely depth of fill proposed including Lagoon 2 based on the earthworks and Mass Haul (VSD 2011) (also see Figure 3.3)
	Source Inventory				
		Benzene	mg/l	Normal(0.00235, 0.00858)	
	SSAC Leachate	Cyanide (Total)	mg/l mg/l	Single(0.025)	Leachate concentrations anticipated based on proposed fill materials, i.e TDU output suitable for <100m from river. A revi of data was carried out within Tables 4.11a and b.
North of	SSAC Leachate concentrations			Single(0.025) Normal(0.0652,0.00827)	
	SSAC Leachate	Cyanide (Total)	mg/l	Single(0.025)	
	SSAC Leachate concentrations (User defined)	Cyanide (Total) Phenol	mg/l mg/l mg/l	Single(0.025) Normal(0.0652,0.00827) Normal(0.0602,0.0393) easures	of data was carried out within Tables 4.11a and b.
	SSAC Leachate concentrations (User defined)	Cyanide (Total) Phenol Thiocyanate	mg/l mg/l mg/l	Single(0.025) Normal(0.0652,0.00827) Normal(0.0602,0.0393)	
	SSAC Leachate concentrations (User defined) Unsaturated Zone -	Cyanide (Total) Phenol Thiocyanate	mg/l mg/l mg/l ered Coal M	Single(0.025) Normal(0.0652,0.00827) Normal(0.0602,0.0393) easures	of data was carried out within Tables 4.11a and b.
	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vertical Dispersivity	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/l mg/l mg/l ered Coal M m	Single(0.025) Normal(0.0652,0.00827) Normal(0.0602,0.0393) easures Triangular (0.5,1.5,2)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3).
	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vertical Dispersivity FOC	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/l mg/l mg/l ered Coal M m g/cm3	Single(0.025) Normal(0.0652,0.00827) Normal(0.0602,0.0393) easures Triangular (0.5,1.5,2) Uniform (1.3.2)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river.
	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vertical Dispersivity	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/I mg/I mg/I ered Coal M m g/cm3 m	Single(0.025) Normal(0.0652.0.00827) Normal(0.0602.0.0393) easures Triangular (0.5.1.5.2) Uniform (1.3.2) Triangular (0.05.0.15.0.2)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004).
	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vertical Dispersivity FOC	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/I mg/I mg/I ered Coal M m g/cm3 m	Single(0.025) Normal(0.0652, 0.00827) Normal(0.0602, 0.0393) easures Triangular (0.5, 1.5, 2) Uniform (1.3, 2) Triangular (0.05, 0.15, 0.2) LogTinangular (0.27, 2.348, 14.8)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river.
	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vertical Dispersivity FOC Water filled porosity	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/I mg/I ered Coal M m g/cm3 m % fraction	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.0393) easures Triangular (0.5, 1.5, 2) Uniform (1.3, 2) Triangular (0.5, 0.15, 0.2) LogTriangular (0.27, 2.348, 14.8) Triangular (0.011, 0.179, 0.375)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004).
	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vertical Dispersivity FOC Water filled porosity	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/I mg/I ered Coal M m g/cm3 m % fraction	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.0393) easures Triangular (0.5, 1.5, 2) Uniform (1.3, 2) Triangular (0.5, 0.15, 0.2) LogTriangular (0.27, 2.348, 14.8) Triangular (0.011, 0.179, 0.375)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, sitistone, shale) Jacobs Babtie 2004 10% of unsarroader zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area.
	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vertical Dispersivity FOC Water filled porosity Unsaturated Condu	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/I mg/I ered Coal M m g/cm3 m % fraction	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.0393) easures Triangular (0.5,1.5,2) Uniform (1,3.2) Triangular (0.05,0.15,0.2) LogTriangular (0.07,2.348,14.8) Triangular (0.011, 0.179, 0.375) LogTriangular (1.19e-08,9.7e-07, 1.51e-05)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004, Although the Coal Measures extend for hundreds of metres beneath the site the thickness of the aquifer has been assigned a most likely depth of 40m. This has been nudertaken to allow for vertical water loss in the
	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vertical Dispersivity FOC Water filled porosity Unsaturated Condu	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/l mg/l ered Coal M m g/cm3 m % fraction m/s	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.0393) easures Triangular (0.5,1.5,2) Uniform (1,3.2) Triangular (0.05,0.15,0.2) LogTriangular (0.07,2.348,14.8) Triangular (0.011, 0.179, 0.375) LogTriangular (1.19e-08,9.7e-07, 1.51e-05)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (claen) strata north of the river, Site specific data (Jacobs Babtie 2004). Site specific data (Jacobs Babtie 2004). Site specific data (Jacobs Babtie 2004), Site specific data (Jaco
	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vertical Dispersivity FOC Water filled porosity Unsaturated Condu	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/l mg/l ered Coal M m g/cm3 m % fraction m/s	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.652,0.0393) easures Thiangular (0.5,1.5,2) Uniform (1.3,2) Triangular (0.05,0.15,0.2) LogTriangular (0.072,348,14.8) Triangular (0.011, 0.179, 0.375) LogTriangular (1.19e-08.9.7e-07, 1.51e-05) Triangular (20,40,60)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, sittstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004). Consim values to account for all potential strata, (clay, till, sandstone, sittstone, shale). Adapted from Jacobs Babtie (20
	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vertical Dispersivity FOC Water filled porosity Unsaturated Condu Thickness	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/l mg/l ered Coal M m g/cm3 m % fraction m/s	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.0393) easures Triangular (0.5,1.5,2) Uniform (1,3.2) Triangular (0.05,0.15,0.2) LogTriangular (0.07,2.348,14.8) Triangular (0.011, 0.179, 0.375) LogTriangular (1.19e-08,9.7e-07, 1.51e-05)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (claen) strata north of the river, Site specific data (Jacobs Babtie 2004). Site specific data (Jacobs Babtie 2004). Site specific data (Jacobs Babtie 2004), Site specific data (Jaco
	SSAC Leachate concentrations (User defined) Unsaturated Zone- Thickness Dry Bulk Density Vartical Dispersivity FOC Water filled porosity Unsaturated Condu Thickness Dry Bulk Density	Cyanide (Total) Phenol Thiocyanate Superficials/Weathe	mg/l mg/l mg/l md Coal M m g/cm3 m % fraction m/s m g/cm3	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.0393) easures Triangular (0.5,1.5,2) Uniform (1,3.2) Triangular (0.27,2.348,14.8) Triangular (0.17,2.348,14.8) Triangular (1.19e-08,9.7e-07, 1.51e-05) Triangular (20,40,60) Triangular (1,1.75, 3.2)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Bablie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004. Although the Coal Measures extend for hundreds of metres beneath the site the thickness of the aquifer has been assigned a most likely depth of 40m. This has been undertaken to allow for vertical water loss in the complex horizontal bedded water regime. Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale). Adapted from Jacobs Babtie (20 to account for a significant proportion of TDU output material which is to be placed in the footprint of lagoon2 in the final location of the river
liver <100m	SSAC Leachate concentrations (User defined) Unsaturated Zone- Thickness Dry Buik Density Vertical Dispersivity Vertical Dispersivity Vertical Dispersivity Water filled porosity Unsaturated Condu Thickness Dry Bulk Density FOC	Cyranide (Total) Phenol Thiocynate Superficials/Weathor , , , , , , , , , , , ,	mg/l mg/l mg/l reed Coal M m g/cm3 m fraction m/s m g/cm3 %	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.652,0.0393) easures Triangular (0.5,1.5,2) Uniform (1.3,2) Triangular (0.05,0.15,0.2) LogTriangular (0.072,348,14.8) Triangular (0.011, 0.179, 0.375) LogTriangular (1.19e-08.9.7e-07, 1.51e-05) Triangular (20,40,60)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, sitistone, shale) Jacobs Babtie 2004. 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004. Although the Coal Measures extend for hundreds of metres beneath the site the thickness of the complex horizontal bedded water regime. Consim values to account for all potential strata, (clay, till, sandstone, sitistone, shale). Adapted from Jacobs Babtie 2004, to account for a significant proportion of TDU output material which is to be placed in the footprint of lagoon2 in the final location of the river Review of all FOC data for (clean) strata north of the river.
kiver <100m	SSAC Leachate concentrations (User defined) Insaturated Zone - Thickness Dry Bulk Density Vertical Dispersity FOC Water filled prosity Unsaturated Condu Thickness Dry Bulk Density FOC Mixing Zone Thickn	Cyanide (Total) Phenol Thiocyanate Superficials/Weathor / / / / / / / / / / / / / / / / / / /	mg/I mg/I mg/I red Coal M m g/cm3 m % fraction m/s m g/cm3 % m	Single(0.025) Normal(0.0652, 0.00827) Normal(0.0652, 0.00827) Normal(0.0602, 0.0393) easures Triangular (0.5, 1.5, 2) Uniform (1.3.2) Triangular (0.05, 0.15, 0.2) LogTriangular (0.27, 2.348, 14.8) Triangular (1.19e-08, 3.7e-07, 1.51e-05) Triangular (1.19e-08, 3.7e-07, 1.51e-05) Triangular (1,1.75, 3.2) LogTriangular (0.27, 2.348, 14.8) Cacluated	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Constin values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data revew of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004. Although the Coal Measures extend for hundreds of metres beneath the site the thickness of the aquifer has been assigned a most likely depth of 40m. This has been undertaken to allow for vertical water loss in the complex horizontal bedded water regime. Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale). Adapted from Jacobs Babtie (20 to account for a significant proportion of TDU output material which is to be placed in the footprint of lagoon2 in the final location of the river. Review of all FOC data for (clean) strata north of the river. Calculated within the model.(Jacobs Babtie 2004).
liver <100m	SSAC Leachate concentrations (User defined) Unsaturated Zone- Thickness Dry Buik Density Vertical Dispersivity Vertical Dispersivity Vertical Dispersivity Water filled porosity Unsaturated Condu Thickness Dry Bulk Density FOC	Cyanide (Total) Phenol Thiocyanate Superficials/Weathor / / / / / / / / / / / / / / / / / / /	mg/I mg/I mg/I reed Coal M m g/cm3 m m/s g/cm3 m m m % m m m/s	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0602,0.0383) easures Triangular (0.5,1.5,2) Uniform (1.0,2) Triangular (0.05,0.15,0.2) Triangular (0.05,0.15,0.2) Triangular (0.07,2.348,14.8) Triangular (1.1,9-08,9.7e-07, 1.51e-05) Triangular (20,40,60) Triangular (1,1.75, 3.2) LogTriangular (0.27,2.348,14.8)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, sitistone, shale) Jacobs Babtie 2004. 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data retive of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004. Altoy the Coal Measures extend for hundreds of metres beneath the site the thickness of the aquifer has been assigned a most likely depth of 40m. This has been undertaken to allow for vertical water loss in the complex horizontal bedded water regime. Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale). Adapted from Jacobs Babtie (20 to account for a significant proportion of TDU output material which is to be placed in the forpmint of lagoon2 in the final Review of all FOC data for (clean) strata north of the river. Calculated within the model.(Jacobs Babtie 2004). refined to more accurately reflect the strata in this area.
iver <100m	SSAC Leachate concentrations (User defined) Insaturated Zone - Thickness Dry Bulk Density Vertical Dispersity FOC Water filled prosity Unsaturated Condu Thickness Dry Bulk Density FOC Mixing Zone Thickn	Cyanide (Total) Phenol Thiocyanate Superficials/Weathor / / / / / / / / / / / / / / / / / / /	mg/I mg/I mg/I red Coal M m g/cm3 m % fraction m/s m g/cm3 % m	Single(0.025) Normal(0.0652, 0.00827) Normal(0.0652, 0.00827) Normal(0.0602, 0.0393) easures Triangular (0.5, 1.5, 2) Uniform (1.3.2) Triangular (0.05, 0.15, 0.2) LogTriangular (0.27, 2.348, 14.8) Triangular (1.19e-08, 3.7e-07, 1.51e-05) Triangular (1.19e-08, 3.7e-07, 1.51e-05) Triangular (1,1.75, 3.2) LogTriangular (0.27, 2.348, 14.8) Cacluated	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, sitistone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004. Although the Coal Measures extend for hundreds of metres beneath the site the hickness of the aquifer has been assigned are most likely depth of 40m. This has been undertaken to allow for vertical water loss in the complex horizontal bedded water regime. Consim values to account for all potential strata, (clay, till, sandstone, sitistone, shale). Adapted from Jacobs Babtie (20 to account for a significant proportion of TDU output material which is to be placed in the footprint of lagoon2 in the final location of the river Review of all FOC data for (clean) strata north of the river. Calculated within the model.(Jacobs Babtie 2004). Site specific data (accobs Babtie 2004). S
River <100m	SSAC Leachate concentrations (User defined) Unsaturated Zone- Thickness Dry Buik Density FOC Water filled poresity Unsaturated Condu Thickness Dry Buik Density FOC Mixing Zone Thickn Hydraulic Conducti Effective Porosity	Cyanide (Total) Phenol Thiocyanate Superficials/Weathor / / / / / / / / / / / / / / / / / / /	mg/I mg/I mg/I reed Coal M m g/cm3 m m/s g/cm3 m m m % m m m/s	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0622,0.0393) easures Triangular (0.5,1,5,2) Uniform (1,3,2) Triangular (0.5,1,5,2) LogTriangular (0.27,2,348,14.8) Cadrular (0.11, 0.179, 0.375) LogTriangular (1,19e-08,9.7e-07, 1.51e-05) Triangular (1,1.75, 3.2) LogTriangular (1,19e-08,9.7e-07, 1.51e-05) Triangular (1,19e-08,9.7e-07, 1.51e-05) Triangular (0.19e-08,9.7e-07, 1.51e-05) Triangular (0.10,0.3,0.5)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Constin values to account for all potential strata, (clay, till, sandstone, sitistone, shale) Jacobs Babtie 2004. 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004. Although the Coal Measures extend for hundreds of metres beneath the site thickness of the aquifer has been assigned a most likely depth of 40m. This has been undertaken to allow for vertical water loss in the complex horizontal bedded water regime. Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale). Adapted from Jacobs Babtie (200 to account for a significant proportion of TDU output material which is to be placed in the footprint of lagoon2 in the final location of the river Review of all FCC data for (clean) strata north of the river. Calculated within the model. (Jacobs Babtie 2004). Site specific data (accobs Babtie 2004). Si
River <100m	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vartical Dispersivity FOC Water filled porosity Unsaturated Condu Thickness Dry Bulk Density FOC Mixing Zone Thickn Hydraulic Conducti Effective Porosity Hydraulic Gradient	Cyanide (Total) Phenol Thiocyanate Superficials/Weathor ctivity ess	mg/I mg/I mg/I ered Coal M m g/cm3 m % fraction m/s m m/s fracton fracton	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Division Triangular (0.5,1.5,2) Uniform (1,3.2) Triangular (0.27,2.348,14.8) Triangular (0.27,2.348,14.8) Triangular (1.19e-08,9.7e-07, 1.51e-05) Triangular (1.175, 3.2) LogTriangular (0.27,2.348,14.8) Caclculated LogTriangular (1.19e-08,9.7e-07, 1.51e-05) Triangular (0.27,2.348,14.8) Caclculated LogTriangular (1.19e-08,9.7e-07, 1.51e-05) Triangular (0.27,2.348,14.8) Caclculated LogTriangular (0.27,2.348,14.8) Caclculated LogTriangular (0.10,3.0.5) Single (0.03)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data rever of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004. Although the Coal Measures extend for hundreds of metres beneath the site the thickness of the aquifer has been assigned a most likely depth of 40m. This has been undertaken to allow for vertical water loss in the complex horizontal bedded water regime. Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale). Adapted from Jacobs Babtie (200 to account for a significant proportion of TDU output material which is to be placed in the footprint of lagoon2 in the final Review of all FOC data for (clean) strata north of the river. Calculated within the model, (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie (2004), values published within the minor aquifer properties manual, adapted to include the TDU output mate
River <100m	SSAC Leachate concentrations (User defined) Unsaturated Zone- Thickness Dry Buik Density FOC Water filled poresity Unsaturated Condu Thickness Dry Buik Density FOC Mixing Zone Thickn Hydraulic Conducti Effective Porosity	Cyanide (Total) Phenol Thiocyanate Superficials/Weathor ctivity ess	mg/I mg/I mg/I reed Coal M m g/cm3 m m/s g/cm3 m m m % m m m/s	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0622,0.0393) easures Triangular (0.5,1,5,2) Uniform (1,3,2) Triangular (0.5,1,5,2) LogTriangular (0.27,2,348,14.8) Cadrular (0.11, 0.179, 0.375) LogTriangular (1,19e-08,9.7e-07, 1.51e-05) Triangular (1,1.75, 3.2) LogTriangular (1,19e-08,9.7e-07, 1.51e-05) Triangular (1,19e-08,9.7e-07, 1.51e-05) Triangular (0.19e-08,9.7e-07, 1.51e-05) Triangular (0.10,0.3,0.5)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Constin values to account for all potential strata, (clay, till, sandstone, sittstone, shale) Jacobs Babtie 2004. 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004. Although the Coal Measures extend for hundreds of metres beneath the site thickness of the aquifer has been assigned a most likely depth of 40m. This has been undertaken to allow for vertical water loss in the complex horizontal bedded water regime. Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale). Adapted from Jacobs Babtie (200 to account for a significant proportion of TDU output material which is to be placed in the footprint of lagoon2 in the final location of the river Review of all FCC data for (clean) strata north of the river. Calculated within the model. (Jacobs Babtie 2004). Site specific data (aclobs Babtie 2004). Site specific data (aclobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie (2004) sublished within the minor aquifer properties manual, adapted to include the TDU ouput mate porosity data and the most likely value representing porosity of the most likely strata/porosity expected.
River <100m	SSAC Leachate concentrations (User defined) Unsaturated Zone – Thickness Dry Bulk Density Vertical Dispersivity FOC Thickness Dry Bulk Density FOC Mixing Zone Thickr Hydraulic Conducti Effective Porosity Hydraulic Gradient Groundwater Flow	Cyranide (Total) Phenol Thiocyanate Superticials/Weathor , , , , , , , , , , , , , , , , , , ,	mg/I mg/I mg/I ered Coal M m g/cm3 m % fraction m/s m m/s fracton fracton	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Triangular (0.5,1.5,2) Uniform (1.0.20, 15.0,2) Triangular (0.07,2.348,14.8) LogTriangular (1.19e-08,9.7e-07, 1.51e-05) Triangular (20,40,60) Triangular (0.27,2.348,14.8) Calculated LogTriangular (1.19e-08,9.7e-07, 1.51e-05) Triangular (0.07,2.348,14.8) Calculated LogTriangular (0.10,3,0.5) Single (0.03) 203	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, sittstone, shale) Jacobs Babtie 2004. 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data review of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004. Although the Coal Measures extend for hundreds of metres beneath the site the thickness of the complex horizontal bedded water regime. Consim values to account for all potential strata, (clay, till, sandstone, sitistone, shale). Adapted from Jacobs Babtie (200 coaccount for a significant proportion of TDU output material which is to be placed in the footprint of lagoon2 in the final location of the river Review of all FOC data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 1004, regime and the regime. Calculated within the model, (Jacobs Babtie 2004), reflect to the rever. Calculated within the model, Jacobs Babtie 2004), reflect to more accurately reflect the strata in this area. Jacobs Babtie (2004), ulues published within the minor aquifer properties manual, adapted to include the TDU ouput mate porosity data and the most likely value representing porosity of the most likely strata/porosity expected. Calculated within the most item ontoring data north of the River. Calculated account for the most likely subar expresenting porosity of the most likely strata/porosity expected. Calculated account for the most likely walue expresenting porosity of the most likely strata/porosity expected. Calculated direction of flow based on site knowlegde and receptor location.
River <100m	SSAC Leachate concentrations (User defined) Unsaturated Zone - Thickness Dry Bulk Density Vartical Dispersivity FOC Water filled porosity Unsaturated Condu Thickness Dry Bulk Density FOC Mixing Zone Thickn Hydraulic Conducti Effective Porosity Hydraulic Gradient	Cyranide (Total) Phenol Thiocyanate Superticials/Weathor , , , , , , , , , , , , , , , , , , ,	mg/I mg/I mg/I ered Coal M m g/cm3 m % fraction m/s m m/s fracton fracton	Single(0.025) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Normal(0.0652,0.00827) Division Triangular (0.5,1.5,2) Uniform (1,3.2) Triangular (0.27,2.348,14.8) Triangular (0.27,2.348,14.8) Triangular (1.19e-08,9.7e-07, 1.51e-05) Triangular (1.175, 3.2) LogTriangular (0.27,2.348,14.8) Caclculated LogTriangular (1.19e-08,9.7e-07, 1.51e-05) Triangular (0.27,2.348,14.8) Caclculated LogTriangular (1.19e-08,9.7e-07, 1.51e-05) Triangular (0.27,2.348,14.8) Caclculated LogTriangular (0.27,2.348,14.8) Caclculated LogTriangular (0.10,3.0.5) Single (0.03)	of data was carried out within Tables 4.11a and b. Conservative estimate based on Mass Haul (VSD 2011) (also see Figure 3.3). Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale) Jacobs Babtie 2004 10% of unsaturated zone thickness (Recommended in Consim)(Jacobs Babtie 2004). Site specific data rever of (clean) strata north of the river. Site specific data (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie 2004. Although the Coal Measures extend for hundreds of metres beneath the site the thickness of the aquifer has been assigned a most likely depth of 40m. This has been undertaken to allow for vertical water loss in the complex horizontal bedded water regime. Consim values to account for all potential strata, (clay, till, sandstone, siltstone, shale). Adapted from Jacobs Babtie (20 to account for a significant proportion of TDU output material which is to be placed in the footprint of lagoon2 in the final location of the river Review of all FOC data for (clean) strata north of the river. Calculated within the model, (Jacobs Babtie 2004), refined to more accurately reflect the strata in this area. Jacobs Babtie (2004), values published within the minor aquifer properties manual, adapted to include the TDU output mate porosity data and the most likely value regresenting porosity of the most likely strat/porosity expected. Calculated based on site monitoring data onth of the River.

Soil Test Results North of River Model (>200m)


	Thiocyanate	DRO	Phenol	Naphthalene	Cyanide	Benzene	Ammoniacal Nitrogen	Phenol	Naphthalene	Benzo(a) pyrene	Benzene
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/kg	mg/kg	mg/kg	mg/kg
MAX	15.5	24.9	1.71	5.15	31.1	5.17	25.8	6	2610	292	35
MIN	0.05	0.046	0.002	0.0001	0.05	0.001	0.2	0.471	0.381	0.027	0.773
AVERAGE	4.843	11.872	0.420	2.561	3.394	1.32	13.033	3.001	1173.29	91.28	11.031
Remedial Targets >200m	17.5	n/a	1.75	n/a	175	8.75	n/a	n/a	n/a	n/a	n/a

Soil Test Results North of River Model (0-100m)

	Thiocyanate	DRO	Phenol	Naphthalene	Cyanide	Benzene	Ammoniacal Nitrogen	Phenol	Naphthalene	Benzo(a) pyrene	Benzene
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/kg	mg/kg	mg/kg	mg/kg
МАХ	0.29	0.090	0.030	0.0052	0.05	0.13	1.52	1.85	155	4.68	19
MIN	0.05	0.046	0.002	0.0001	0.05	0.001	0.2	0.01	0.009	0.015	0.009
AVERAGE	0.0583	0.0462	0.0065	0.0002	0.05	0.0022	0.228	0.1410	2.2606	0.1169	1.0558
Remedial Targets <100m	1	0.3	0.03	0.01	0.05	1.75	2.5	n/a	n/a	n/a	n/a

Predicted /Actual GW/SW Water Results

onsim 2.5 Results (2012)	1		-			1	-	
							,	IACOBS BAB
		Predi	ı cted 95%ile Con	centration at th	e Receptor at 3	00 vears-	ma/l	
	Ben	zene	Cva		Phe		Thiocv	anate
Raw (EQS) / Diluted 1/10th EQS	0.03	0.003	0.05	0.005	0.03	0.003	1	0.1
	Raw	Diluted	Raw	Diluted	Raw	Diluted	Raw	Diluted
	concentration	concentration	concentration	concentration	concentration	concentration	concentration	concentrati
Groundwater Source Model 3 North of River	0.8003	0.0046	0.0331	0.00019	0.2883	0.0016	7.1227	0.0407
Groundwater Source Model 2 South of River	0.0285	0.0002	0.7376	0.00422	0.1534	0.0009	8.3372	0.0476
Groundwater Source Model 1 Zones 4 and 5	0.0063	0.00004	0.0032	0.00002	0.0484	0.0002763	0.1636	0.000934
Total concentration at River Rother	0.8351	0.004772	0.7740	0.004	0.4901	0.0028	15.6236	0.09
Applied Dilution factor	175							
					_			
		Predi	cted 95%ile Con					
		zene	Cya		Phe		Thiocy	
Raw (EQS) / Diluted 1/10th EQS	0.03	0.003	0.05	0.005	0.03	0.003	1	0.1
	Raw	Diluted	Raw	Diluted	Raw	Diluted	Raw	Diluted
	concentration	concentration		concentration	concentration	concentration		concentrat
Groundwater Source Model 3 North of River	1.1830	0.0067601	0.3630	0.0021	0.3365	0.0019	7.1227	0.0407
Groundwater Source Model 2 South of River	0.0555	0.0003174	2.5126	0.0144	0.2155	0.0012	8.3372	0.0476
Groundwater Source Model 1 Zones 4 and 5	0.0126	0.0000720	0.0541	0.0003089	0.0683	0.0003901	0.1636	0.000934
Total concentration at River Rother	1.2512	0.007	2.9296	0.017	0.6202	0.0035	15.6236	0.089
Applied Dilution factor	175							
		Predic	ted 95%ile Cond	entration at the	Receptor at 1	000 years	- mg/l	
	Ben	zene	Cya		Phe		Thiocy	anate
Raw (EQS) / Diluted 1/10th EQS	0.03	0.003	0.05	0.005	0.03	0.003	1	0.1
	Raw	Diluted	Raw	Diluted	Raw	Diluted	Raw	Diluted
	concentration	concentration	concentration	concentration	concentration	concentration	concentration	concentrat
Groundwater Source Model 3 North of River	1.5569	0.0088966	1.2769	0.0073	0.3722	0.0021	7.1227	0.0407
Groundwater Source Model 2 South of River	0.0944	0.0005394	7.3386	0.0419	0.2747	0.0016	8.3372	0.0476
Groundwater Source Model 1 Zones 4 and 5	0.0224	0.0001281	0.2576	0.0014722	0.0926	0.0005292	0.1636	0.000934
Total concentration at River Rother	1.6737	0.0096	8.8731	0.0507	0.7395	0.004	15.6236	0.089
Applied Dilution factor	175							
Kev								
Exceedance								
Marginal Exceedance								
Marginar Exceedance								

		Measured GW Concentration	Concnatino in Surface Water 170 (DF)
General Water Quality			
Conductivity @ 20 deg.C	mS/cm	15.8	0.105
pН	pH Units	10.3	-
Sulphate	mg/l	8790	58.6
Chloride	mg/l	4130	27.5
Thiocyanate	mg/l	1.17	0.008
Ammoniacal Nitrogen as NH3	mg/l	0.259	0.002
COD, unfiltered	mg/l	885	5.900
BOD, unfiltered	mg/l	476	3.173
Nitrate as N	mg/l	0.0677	0.0005
Cyanide, Free	mg/l	0.05	0.0003
Organic Compounds			
GRO >C5-C12	µg/l	50	0.33
Benzene	µg/l	7	0.05
Toluene	µg/l	6	0.04
Ethylbenzene	µg/l	5	0.03
m,p-Xylene	µg/l	8	0.05
o-Xylene	µg/l	3	0.02
Total Aliphatics >C12-C35 (aq)	µg/l	10	0.07
Total Aromatics >EC12-EC35 (aq)	µg/l	15	0.10
Total Aliphatics & Aromatics >C5-35 (aq)	µg/l	35	0.23
PAH, Total Detected	µg/l	6.9	0.05
Phenol	mg/l	0.002	0.000013
Metals			
Iron, Ferric (+3)	mg/l	0.05	0.00033
Iron (diss.filt)	mg/l	0.195	0.001
Iron, Ferrous (+2)	mg/l	35.5	0.237
Iron	mg/l	19	0.127
Mercury	µg/l	0.105	0.001
Cadmium	µg/I	1.07	0.007
Chromium	µg/I	19.6	0.131
Copper	µg/I	29.6	0.197
Nickel	µg/l	26.9	0.179
Lead	µg/l	184	1.227
Zinc	µg/I	109	0.727

Masterplan – Post Completed Landform

- 28 hectares of residential led mixed use development
- Flood alleviation scheme (Dam and Reservoir)
- Realigned River Rother and Backwater
- 65 hectares of public open space & nature reserve
- Sports Facilities
- Sustainable Urban Drainage (SUDS)
- Access Road and Car Park

Conclusions (H and H)

- □ CSM evolve gather data; test hypothesis; revise the CSM
- Early contractor involvement
- □ Scientific advancement
- Changing RTs in contract
- Contingency in RT (unforeseen)
- Care with VE
- Mass Haul Changes
- Regulatory engagement and agreement is vital.

Thank you for your attention. Any questions?