APPLYING THE RESEARCH – WHAT REMAINS TO BE TACKLED

Simon Firth, Firth Consultants Ltd

Dr Sarah Bull, Ricardo AEA

SoBRA/SAGTA workshop on C4SLs 8 April 2014, BAE Systems, Farnborough

What do we have?

- C4SL research report + appendices:
 - Detailed consideration of uncertainties involved in derivation and use of screening criteria
 - Development and justification of a methodology to derive C4SL
 - Provisional C4SLs for 6 substances + 6 land-uses
 - Companion policy document from Defra
 - Gives policy steer on the choices/options given in research document
 - Gives C4SL for 6 substances + 6 land-uses
 - 2 new land-uses (POS)
 - C4SL for 3 substances with no SGV (BaP, CrVI, lead)

What remains to be tackled?

- C4SL use
 - How/where should they be used?
- C4SL for other substances
- Considerations for DQRA
- Further research on key areas to refine knowledge based on robust data

C4SL use

- Can help classify a site as Category 4 for human health
- Subject to same use limitations as SGV/GAC, e.g.
 - Do not assess all possible s-p-r linkages involving humans
 - Do not assess acute risks
 - LLTC (and HCV) based on potential for significant harm occurring to humans and not on other effects (such as odour/phytotoxicity)
- Represent a risk that is higher than "minimal"
 - Risk of adverse effects occurring to site users/occupants is still low

C4SL for other substances

- Published SGV/GAC exist for ≈ 120 substances
- SGV/GAC can still work effectively as conservative screening criteria as part of a GQRA
 - Note that all generic screening values should be subject to periodic check for up-to-date chemical specific data
 - C4SL are beneficial for substances where SGV/GAC are frequently exceeded
 - Not many remaining substances (without C4SL) where this is the case, which are they?
- GAC for POS could easily be derived using C4SL POS assumptions

Possible simplified methodology for deriving C4SL for other substances

Residential

-Reduced soil adherence factor -Reduce exposure frequency for dermal contact outdoors

-Update inhalation rates

-Update consumption rates (chemical specific)

Allotments

-Update consumption rates (chemical specific)

Commercial

-Update inhalation rates

POS parameters

- POS_{resi} + POS_{park}

1. Toxicological assessment

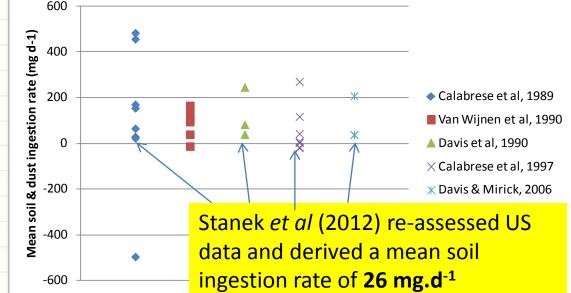
2. Derive LLTCs (mg kg⁻¹ bw day⁻¹)

3. Use modified CLEA and LLTCs to derive **pC4SLs**

4. Uncertainty check
-Are the generic rules for setting LLTC appropriate?
- Are there any significant
uncertainties not considered in the research project?

5. Context -Background concentrations -Background exposure -Socio-economic considerations

C4SLs suitable for use (final C4SLs)


yes

6. Is the pC4SL appropriately precautionary?

no

Considerations for DQRA

- Research unpicks key aspects of modelling that could prove useful to DQRA
 - E.g. soil ingestion rates

- Probabilistic modelling highlights the range/distribution in exposures that might occur
 bolnful to think of likelihood of model underestimating
 - helpful to think of likelihood of model underestimating exposure

Further research

- Further research to better
 understand relationship
 between concentrations in soil
 and risk to health
 - Exposure modelling
 - Use of biomarkers to estimate exposure
 - Health impacts from land contamination
- Prioritise research on key areas of concern
 - Where can we achieve greatest benefit?

Exposure model

Background

^EPide. ^{Miology}

Soil ingestion

 Key exposure pathway for Resi, Commercial and POS land-uses for non volatile compounds

Data gaps

- Soil ingestion rates based on limited datasets from USA and Netherlands, conducted in summer months
- Some evidence that ingestion of soil derived dust indoors << ingestion of soil outdoors

Ongoing/Potential research

 Not aware of any soil ingestion studies being conducted in the UK, or studies that represent seasonal changes in behaviour

Consumption of homegrown produce

Key pathway for allotments land-use

Data gaps

 High degree of uncertainty in the amount of homegrown produce consumed and soil to plant concentration factors

Ongoing/Potential research

- Homegrown fraction based on 2004/5 expenditure survey (fraction of household fruit/veg obtained for free). Still valid? Is HF set to increase?
 - FSA study on soil to plant concentration factors for metals in Devon/Cornwall required for other areas?

Surveillance/Biomarkers

 Would be useful to know 'normal' levels of human exposure i.e. lead, arsenic

Previous research

- Millennium cohort study (Child of the new century)
- Centre for longitudinal studies Institute of Child Health
- ~ 18800 children
- Investigated child development, cognitive ability, demographic info
 - Every tooth tells a story project (~ 3013 children)
 - Investigated lead build-up in children's teeth and environmental lead concentrations in different regions

o 13 % of families live in lower than average areas (19-37 mg/kg)

- 70 % live in average areas (38-47 mg/kg)
- \circ 17 % live in higher than average areas (>48 mg/kg)

Surveillance/Biomarkers

- Surveillance of lead in children study (SLIC)
- BPSU, HPA (PHE)
- To investigate the incidence of elevated blood lead concentrations ≥10µg/dl in children
- To report the proportion of cases where a lead source was identified and to describe these sources

Surveillance/Biomarkers

Arsenic in Leicester

- As in hair, urine and toenails
- Effect of ethnicity and diet
- Toenails appear to be a sensitive biomarker of exposure
- Devon Great Consols, Cornwall
 - As in soil
 - Bioaccessible fraction
 - As in hair, urine and toenails
 - As in toenails much higher in participants living near DGC
 - Arsenic in private drinking water supplies
 - As in private water supplies (5.5 % exceeded 10 μg/L)
 - As in soil, household dust, and foodstuffs
 - As in hair, urine and toenails

Biomarkers

Potential research

- Compare tooth lead levels in children from regions of high and low lead?
- Correlate tooth levels to blood levels?
- Investigate As in toenails in regions of high arsenic and compare with data from Leicester?
- Investigate soil As levels in DGC and correlate with toenail levels?

Epidemiology

 Used as a 'reality check' i.e. compare C4SL against data from regions with associated epidemiology data

Previous research

- Shipham, Avonmouth and Worcestershire for cadmium
- Glasgow for chromium VI
- Weston for HCBD
- FERA report SP1002, 2009. Potential health effects of contaminants in soil
 - Overall, there is no evidence for widespread impacts of contaminated land on human health. Equally, the potential for health impacts has not been dismissed.

Epidemiology

- Bambra et al (2014). Healthy land? An examination of the arealevel association between brownfield land and morbidity and mortality in England
- A significant and strong, adjusted, area-level association was found between brownfield land and morbidity
- Brownfield land could potentially be an important and previously overlooked independent environmental determinant of population health in England
- Morrison et al (2014). An initial assessment of spatial relationships between respiratory cases, soil metal content, air quality and deprivation indicators in Glasgow, Uk: relevance to the environmental justice agenda
 - Relationship between soil nickel and respiratory cases
 - Significant correlation between soil metal concentration and deprivation
 - Causal links between soil quality and population health/well being??

Epidemiology

Potential research

- Population epidemiology study of health effects in areas with known contaminants
 - BGS NBC data
 - Biomarker data
 - SAHSU health data
 - Office for National Statistics data
 - Hospital episodes statistics

Thank you

Sarah.Bull@ricardo-aea.com Simon@firthconsultants.co.uk